МОДЕЛИРОВАНИЕ ВАРИАЦИЙ ГЕОМАГНИТИНОГО ПОЛЯ В ПЕРИОД ИНТЕНСИВНОЙ МАГНИТНОЙ БУРИ

Интенсивность астрономической части магнитного поля кольцевого тока тесно связана с потоком энергии, поступающей в магнитосферах солнечного ветра. Астрономия в настоящее время, как поле магнитной бури, на главных фазах магнитной бури в ближайшем будущем на этапе восстановления. Основная часть пола геомагнитных вариаций рассчитывается методом линейной фильтрации и предполагается, что магнитосфера функционирует как замкнутая система. Конечным этапом изучения механизмов астрономической активности и поля кольцевого тока предполагается использование данных о параметрах солнечного ветра за нескольких предшествующих часов.

1. Моделирование магнитного поля кольцевого тока (DR) на поверхности Земли во время магнитных бурь. В зависимости от параметров солнечного ветра выполнялись модели моделирования омиксы модели DR в течение магнитных бурь различной интенсивности при принятых значениях функции индукции F и параметра распада кольцевого тока g. Некоторые результаты расчета моделей DR с наблюдаемыми вариациями DR симметричной части поля кольцевого тока, в интервалах интенсивной бури 01.03—03.04 1973. Величина DR вычислялась за каждый час UT определением значений значений горизонтальной компоненты поля по долготной интегральной векторной обсерватории в каждый час UT с учетом астрономической части поля DCF токов. Цель данной статьи — установление параметров совокупности DR с географическими параметрами солнечного ветра и моделирование ASY на средних и низких широтах.

2. В нижней части рис. 1 приведены вариации числовых значений DR наблюдаемых (DRn) и моделей (DRm). В 19—21 UT 23 марта интенсивность DRn достигает экстремума, уменьшаясь до минимальных значений в 07 UT 1 апреля. Этот экстремум связан с поворотом B0, компоненты ММП в квт в 16—20 UT и в квт в 21—02 UT [3]. Скорректирование DRm для 07 UT 1 апреля началось с врезки по росту напряженности B0 компоненты ММП до ~21 kTc в 16—20 UT. Максимальное направление кольцевого тока приходится на 17—22 UT 01.04. Фаза восстановления магнитной бури связана с поворотом B0, ММП в квт. В связи с поворотом B0, ММП в квт в 5—9 UT [1] снова возрастает. Спад DR к концу суток 2 апреля обусловлен новым поворотом B0, ММП в квт.

Модельные величины DRm на рис. 1 в общих чертах соответствуют наблюдаемым DRn. Это обусловлено тем, что функция индукции F в уравнении баланса энергии для кольцевого тока контролируется B0, компонентой ММП и, согласно
Рис. 1. Вариация долготной ассиметрии магнитного поля на экваторе ASY (a) и магнитного поля экватора планеты вектора DR (б); сплошные линии — наблюденные значения DR, штриховые — модели DR по [2].

[2], определяется из соотношения:

\[F = 8.2 \times 10^{-4} (B_0 - 0.67) - 14.1(V - 300) + 9.6, \]

где \(F \) в \(nT/s \), \(V \) в \(km/s \), \(B_0 \) и дисперсия \(MMP \) в азимут. DR, длительно уменьшается по фазе восстановления. Лучшего согласия DR, и DR, можно было бы достичь для данной бури, уменьшив принятые для \(\sigma_{ф, \psi, \varphi} \) значения с \(-9 \times 10^{-4} \) до \(\sigma_{ф, \psi, \varphi} \) с 6 ч. Наблюдение фазы бурь моделей значения \(\sigma_{ф, \psi, \varphi} \approx 3 \times 4 \) ч при наблюдаемых значениях \(F \approx (2 - 6) \times 10^{-15} \) фрезеруется описанием вариации DR. При принятых, согласно модели [2], значениях \(\sigma_{ф, \psi, \varphi} \) корреляция \(r \) между DR, и DR, равна 0.96, а среднеквадратичное отклонение (3) равно 19.9 нТл, что находится на уровне значений с \(-6 \times 10^{-4} \) величину числа бурь для модели экватора планеты по [2].

3. Долготная ассиметрия вариаций магнитного поля (ASY) приведена в верхней части рис. 1. 31 марта ASY возрастает вместе с интенсивностью DR, достигая в экстремуме в 20 UT примерно тех же значений. На главной фазе бури ASY рас-
В окресяющем теме относительно D и геометрическое значение ниже 300 мм в 17-19 UT 1 апреля в 1,5 раз превышает [D14]. Степ ASY начинается в интервале экстремальных интенсивностей D (19-22 UT 1 апреля) и происходит более менее стремительно. Таким образом, уменьшение асимметрии начинается в течение развицового кольцевого тока и, следовательно, симметрия более чувствительна к вариациям B, компоненты ММ, чем D. Об этом же свидетельствует экстремум в ASY в 02 UT 2 апреля, который отражает кратковременное вмешивающееся южно северное направление, а не СЗ в 01 UT, проявлявшееся в вариациях D, в виде задачек спада. С 02 до 07 UT 2 апреля B, направленное к северу, D и ASY спадать, при D, более медленно, оставаясь на уровне < 100 нл, в то время как ASY уменьшается до 40 и < до 07 UT 2 апреля начинается усиление D и ASY до -130 и 140 нл соответственно. В 10 UT уменьшается D и ASY, в 15 UT уменьшается ASY до 140 нл, в 16 UT ASY уменьшается до 0 нл.

При формировании ASY, возможно, следует учитывать следующие факторы:

1. Недостаточная информация о пространственных вариациях D и ASY на границе магнитосферы.
2. Влияние внешних факторов, таких как солнечная активность, на магнитосферу.
3. Необходимость учета влияния межпланетной среды на формирование ASY.

Полное исследование этих вопросов требует дополнительных наблюдений и анализа данных.
Рис. 2. Аномалии магнитного поля на западе в главную фазу магнитной бури 01.04.1973 г., в зависимости от географических параметров солнечного ветра, которые ощущает АСУ на "г" цифры на кривых — время в "Т"
в ионизационной обс. Толщина \(t = 37^\circ \) с учетом полей кольцевого тока, так и трехмерных токовых систем.

Из вариантов горизонтальных компонент в обс. Нимов и Толщина были исключены способные созвездующие варианты (за 12 апреля 1978 г.). Полученные вариации сопоставлены с модельными, рассчитанными как сумма полей DC, \(D_\text{A} \) и \(A_\text{A} \), полей DC и \(A_\text{A} \) на поверхности Земли на экваторе конвертиру-

ются по известным межпланетным данным и рассчитанным при помощи [2,5], а затем пересчитываются на широту соответствующей обсерватории. Модельные значе-

ния \(A_\text{A} \) сжимаются и находят свой нынешний вариант с помощью математического эффекта межпланетных трехмерных токовых систем. Для их расчета использовалась модель ИЗМИРАН [6]. Эта модель позволяет определить величины юнософных и пред-

дельных токов во всей области широт \(\Phi > 60^\circ \) при известных значениях \(B_1 \) и \(B_2 \) компонент ММП. При заданном распределении токов трехмерной системы магнитное возмущение в любой точке на земной поверхности рассчитывается по засечке Бей-Саняра. Для наших целей модель ИЗМИРАН для атмосферы равноденствия модифицировалась смещением центра юнософной токовой струи высокоширот-

ных токов к экватору. Величина смещения зависит от интенсивности кольцевого тока на экваторе \(D_\text{A} \), и выражается по соотношению, приведен-

ному в [7].

На рис. 3 представлены полученные описанным выше способом модельные вариа-

ции геомагнитного поля 31 марта — 3 апреля 1979 г., от кольцевого и преддельных

токов в сравнении с наблюдаемыми значениями \(D_\text{A} \) компонентами на обс.

Толщина (рис. 3а) и Нимов (рис. 3б) соответственно. В обс. Толщина модель описывает понижения поля в 20—24 UT 31 марта и в 12—24 UT 1 апреля. Счита-

ется характерное понижение в DR в 8—12 UT 2 апреля. Время экстремальных

понижений поля в главную фазу бура по модели достаточно хорошо согласуется с наблюдениями. В обс. Нимов модельные значения вариаций поля в экстрему-

ме несколько меньше наблюденных при хорошем совпадении во времени. По-

добные два кривых характеризуются коэффициентами корреляции \(r = 0,87 \) и \(r = 0,83 \) в супердемографических отклонениях \(a = 27 \times 10^{-3} \) и \(a = 35 \times 10^{-3} \) соответ-

ственно для обс. Толщина и Нимов. Удовлетворительное описание модельных вычисленных наблюдаемых вариаций геомагнитного поля свидетельствует о за-

метном вкладе высокоширотных токовых систем во время магнитных бурь как на низких, так и в средних широтах.

Приведенные выше результаты поддерживают выводы о существенном вкладе

высокоширотных токовых систем в создание асимметрии возмущенного поля на

поверхности Земли (см., например, [6]). Так что интенсивность кольцевого тока и трехмерных токовых систем тесно связаны с параметрами межпланетной среды, но существует возможность прогнозировать не только вариации магнитного поля кольцевого тока, но и вариации поля на конкретных магнитных об-

серваториях во время магнитных бурь.

Предполагается, что магнитосфера классифицируется как линейная система на воздей-

ствии магнитного возмущения. Стационарный коэффициент этой линейной системы

определяется из решения интегрального уравнения

\[
m(t) = \int_0^t \left(R(t) m(t - \tau) d\tau \right),
\]

где \(R(t) \) — выходная функция, \(h(t - \tau) \) — входная функция, \(h(t) \) — импульс-

ная функция системы. Функция \(R(t) \) вычисляется по известным значениям \(m(t) \) и \(m(t) \) исходя из критерия минимума среднеквадратического отклонения. Некоторые входные функции использовались сначала значения географических переменных солнечного ветра \(S, E \) и \(D \), выходной функции — индексы геомагнит-

ной активности AE и DR за интервал с 07 UT 01.04 — 07 UT 02.04.1973. Этот
интервал соответствует главной фазе и начальной стадии фазы восстановления изумчивой бури.

На рис. 4 приведены рассчитанные значения $h(\tau)$. Для широкой активнос-ти (рис. 4a) $h(\tau)$ для индексов e, F и E подобны (обращение характера кри- вых сопровождено различием в знаках, ибо $e > 0$ и $F < 0$): после основного экстремума на первом втором часе происходит резкое уменьшение $|h|$. Это оз-начает, что основной вклад в индекс E данной бури имеет зависимость от параметров межстанциональной среды и данный и предшествующий часах. Последующая зависимость от τ носит колебательный характер с периодом в несколько часов и с уменьшающейся амплитудой. Экстремумы на десятом и семнадцатом часе вредли имеем физический смысл. Изменение временного интервала, взятого для определения $h(\tau)$ (например, с 12 UTC 1 апреля до 12 UTC 2 апреля) несколь- ко деформирует кривую $h(\tau)$: при сохранении основного экстремума на $\tau = \ldots$
Рис. 4. Импульсные функции связи $h(r)$ для индексов AE (a) и DR (b); вспышки функции:

- $+$,
- $+$,
- $+$,
- $+$,
- $+$,
- $+$,
- $+$.

1. 1 - 2 ч разумно уменьшать эксперименты на $t = 10$ и $t = 17$ и все кривые $h(r)$ после резкого спада $h(r)$ на $t = 2$ становится очень регулярной. По-видимому, обнаруженный в [11] слабый дополнительный экстремум на $t = 5$ связан с таким регулярным характером кривой $h(r)$ и не имеет физического смысла.

Для колосцевого тока (рис. 40) кривые $h(r)$ после экстремума на $t = 2$ ч носят более регулярный характер, чем кривые $h(r)$ для AE-индекса. Для различных геоэффективных параметров/соленого ветра меняется характер кривых и количество экстремумов. Это свидетельствует о менее тесной связи DR с параметрами солнечного ветра. По-видимому, менее тесная связь обусловлена и медленный спад $h(r)$ для DR-индекса после экстремума на $t = 2$ ч и дополнительный слабый экстремум на $t = 6$ ч в [11]. Различный характер связи AE- и DR-индексов.
с геофизически отмеченными параметрами солнечного ветра обусловлен тем, что \mathbf{E} и \mathbf{F} обусловлены не саму величину DR, а ее изменением [12]. В то же время вектор AE непосредственно не контролируется параметрами солнечного ветра. Однако отмеченные выше значения $h (r)$ позволяют достаточно точно воспроизвести наблюдаемые вариации AE и DR. На рис. 5 приведены наблюдаемые (случайная линия) и прогнозные (штриховка) значения AE и DR для интервалов 07 UTC 01.04 − 07 UTC 02.04. 1975. Видно, что вычисленные вариации описывают результаты наблюдений, за исключением описанной интервала, где отмечены значительные изменения. Это означает, что для точного описания индексов активности необходимо использовать данные с параметрами солнечного ветра за несколько предшествующих часов.