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Abstract. A new method is proposed to determine all components of the solar magnetic 
fields using the cumulants of the profile of a magnetic sensitive line. The method is based 
on polarization measurements in a number of points of the line profile and subsequent 
calculation of the amplitudes and phases of its two first Fourier-harmonics. 

Key words: Solar magnetic field - Fourier-magnetograph 

1. I n t r o d u c t i o n  

The methods  employed to obtain vector magnetic fields on the Sun are 
usually based on measurements  of the Stokes parameters  in magnetoactive 
lines followed by interpretation with adequate radiative transfer modeling. 
As a mat te r  of fact, one measures the polarized intensities either in selected 
regions of the profile (using Babcock-type magnetograph),  or all over the 
profile (using Stokesmeter). The measurements  can be carried out simulta- 
neously or by scanning along the profile. 

The magnetic field parameters,  calculated from the measured polariza- 
tion, are very sensitive to variations of the line profile due to the physical 
conditions in the  line forming layer (such as temperature ,  pressure, and in- 
homogeneities), and strongly depend on the adopted model atmosphere.  

The difficulties involved in the methods which employ a single wavelength 
can be avoided by using integral parameters  of the profile (displacement of 
the gravity center, width, a symmet ry  etc.). Semel (1970) was one of the first 
to use relative displacements of the gravity centers of the a -components  of 
magnetoactive lines as a measure of the longitudinal magnetic field. The 
present work is, in some sense, an extension of this idea to the vector mag- 
netic field. 
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2. C u m u l a n t s  a n d  t h e i r  r e l a t i o n s  to  m a g n e t i c  f ie lds  

As integral parameters  of the line we shall take the cumulants determined 
from the following relations: 

mn = j -n  "dnlnI(w) ] 

Jw=0' 
(1) 

where I(w) = f I(.k)eJ~;~d)~ is the Fourier t ransform of the line depression 

profile I(,k), and j = x/Q--f. There exist relationships between the cumulants 
and the central and starting moments  of I (Malakhov, 1978): 

8s 1 ~-~ OL 1 - center of gravity of the line profile 
se2 = #2 = c~2 - c~ - square of the width of the line profile 
se3 -- P3 -- oz3 - 3oqo~2 + 2ol 3 - a symmet ry  of the line profile 

where 

] ~ n  

are the central moments,  

f • (~ - ~1) n d~ 

fI()~)d()~) ' 

f I(A) A n dA 
~ : f I(,~)d()~) ' 

are the starting moments,  and I(A) is the line depression profile as a func- 
tion of the wavelength measured from the nominal value. Though the first 
cumulants coincide with the central moments,  we shall rather  use the sys- 
tem of cumulants owing to their additivity in the convolution procedure 
(Malakhov, 1978). 

As shown below, the knowledge of the two first cumulants of different 
states of polarization is sufficient to calculate all components of the vec- 
tor magnetic field. Let us discuss one of the possible procedures. Let solar 
emission in a magnetoactive line with Stokes parameters  Io,Vo,Qo and U0 
be analyzed by a polarization analyzer consisting of 2 elements: a controlled 
birefringent plate and a linear polarizer. The operation of the analyzer will 
be described in the reference frame in which the axes coincide with those 
of the polarization ellipse, consequently U0 = 0 *. The angle between the 
transverse magnetic field component and the plate axis is denoted by fl, and 
the angle between the beam and the magnetic field vector by % 

* In general, the polarization ellipse does not maintain a single orientation along the 
line profile and, consequently, such a single reference system cannot be found. However, 
some solutions of the radiative transfer equation do allow such a definition, in particular, 
those used at the end of this section. 
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The polarization analyzer has six states: 
1) G (�88 P (/3 § 45 ~ - delay between the ordinary and extraordinary 

beams produced by the plate is ~, angle between polarizer axis and the fast 
axis of the plate is 45 ~ The arguments of G and P describe state of the 
retarder and the polarizer, respectively. 

2) G (-�88 P (fl + 45 ~ - delay is - } ,  angles are the same. 
3) G (0, fl); P (/3 § 45 ~ - delay is zero, angles are the same. 
4) G (0,/3); P (/3) - delay is zero, polarizer axis turned by -45  ~ 
5) G (0,/3); P ( /3 -  45 ~ - delay is zero, polarizer axis turned by -90  ~ 
6) G (0,/~); P ( /3-90 ~ - delay is zero, polarizer axis turned by -135 ~ 
It is easy to show that  radiation intensities at the analyzer output for 

each of its 6 states can be described as follows: 

IO)  = 0.5Io - 0.5Vo 

f (2) = 0.5Io + 0.5Vo 

i(3) = 0.5Io - 0.5 sin(2/3)Qo 

I (4) = 0.5Io + 0.Scos(2/~)Qo 

i(5) = 0.5Io + 0.5sin(2/3)Qo 

I (6) = o . 5 I o  - 0.5 cos(2 )Qo. 

(2) 

Now, let us calculate the relationships between the original Stokes param- 
eters and the cumulants for six states of the analyzer. For the sake of sim- 
plicity, assume that I0 and Q0 are strictly even functions of ,~ and ~ is 
strictly odd function of ~. By substituting I(~) - -  i(6) in the expressions for 
moments we obtain: 

= = - A ( H ,  c o s  

(3a) 
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~e~ 1) = ~e~ 2) = B(H, 3') - A2( H, 7)" cos2 3' 

~e~3) B - Csin 2/3 
= 1 - D s i n 2 / 3  

~e(4)2 - B + C c o s  2/3 
-- l + D c o s 2 / 3  (3b) 

~e~5) _ B + C sin 2fl 
- l + D s i n 2 / 3  

where 

@) _ B - C c o s  2r 
- 1 - D cos 2/3' 

A(H,7) = f Vo),d)~. 1 (4) 
f Iod~ cos 7 '  

B(H, 3`) - f I~ 
f lod), ' (5) 

C(H, 3 )̀ - f Q~ 
: Iod~ ' (6) 

D(H, 7) - f Qod,~ 
f Iod~, ' (7) 

and H is the magnetic field strength. However, the signals under considera- 
t ion depend on properties of the atmosphere (pressure, temperature, velocity 
and magnetic fields, and the variation of these parameters along the line-of- 
sight). In order to simplify the computation, we adopt the same approxima- 
tion as Unno (1956). Under this approximation, A, B, C, and D, depend on 
constant values of H (the field strength), 7 (the inclination angle), ~0 (the 
line-to-continuum opacity ratio), g (the Lande factor), A),D (the Doppler 
halfwidth of the line) and the two coefficients which describe the source 
function. Figure 1 shows calculations based on this approach. The parame- 
ters have been chosen to correspond to those of the photospheric Fe I 5250 
A line. The ratio r]0 of opacities at the line center to that in the continuum 
was taken equal to 10. The field strength is given in units of the Doppler 
halfwidth (H = 1 corresponds approximately to 1000 G). A is expressed in 
Doppler halfwidths, B and C in square of the Doppler halfwidths. 
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Fig. 1. Dependence of A, B, C, and D on the field strength H. The simulations refer to the 
line FeI 5250 • observed in the photosphere, so that H = 1 corresponds approximately to 
1000 G. The solid line is used for "7 = 0, the dashed line for 3' = 7r/2, and the dash-dotted 
line for h' = 77/4. 

3. C a l c u l a t i n g  c u m u l a n t s  by Four i e r - ana ly s i s .  
Four ie r  vec to r  m a g n e t o g r a p h  

Below we describe the method for calculating the cumulants by Fourier 
analysis of the line profile. For this purpose, we use expressions connecting 
the amplitudes and phases of the Fourier harmonics of the line profile with 
its cumulants (Didkovsky, Kozhevatov and Stepanyan, 1986): 
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 (zxa) ael  _ : 1 , a l  

r., + ..., (8) 

s = : i ( a ) e a ,  

where A,k = 2rr/w is the period of the Fourier harmonic, and .4 and �9 are 
its amplitude and phase, respectively. 

The two first eumulants are enough to determine the magnetic field under 
our simplifying assumptions (see Section 2). However, the determination 
of the first three cumulants might allow a more elaborate modeling (for 
instance, taking into account the asymmetry of the line profiles). Because of 
this future possibility, and since the determination of two or three harmonics 
requires a similar computational effort, here we describe how to compute r 
r and r To determine the three first cumulants, we need to know the 
amplitudes and phases of the two first harmonics of the Fourier-transform 
of the line profile (the domain of definition of the line profile is considered 
as the period of the first harmonic). As seen from Equation (8), the phases 
of the long-period harmonics (those with small 1/A~) are proportional to 
the shift of the center of gravity (ml). In order to determine a~t and ae3, 
we have to know the phases of two harmonics (with small 1/A)~1 and with 
somewhat larger 1/A~2). A similar procedure is applied to determine the 
even cumulants from the amplitudes. The period of the first harmonic is 
large enough, so that the first term dominates the series for the phases. The 
term A)~ -3 and higher order terms can be neglected, and consequently, 51 is 
determined from the phase of the first harmonic. The second harmonic has 
a smaller period; in this case the series for the phases has two major terms 
while the series for the amplitudes has just one term. Since the first cumulant 
and S are known, the expressions for the phase and amplitude of the second 
harmonic are used to derive the third and the second cumulants. 

According to the Kotelnikov - Shannon criterion (see Bell, 1972), the 
characteristics of the Fourier harmonics can be determined by making records 
at discrete points spaced by no more than 1/3 of the harmonic period. There- 
fore, the intensities measured at six points along the profile are enough to 
determine the amplitude and phase of the two first harmonics. In this case 
one condition should be observed: before discretization, higher-frequency 
harmonics must be eliminated from the line profile to avoid aliasing (see, 
e.g., Bracewell, 1978). The smoothing can be done by selecting the appro- 
priate resolution of the instrument. 

The procedure of determining magnetic fields by the proposed Fourier- 
method comprises the following stages: 



FOURIER VECTOR MAGNETOGRAPH 379 

1. Measure intensities at six discrete equidistant points along the line 
profile at six positions of the polarization analyzer. 

2. Calculate the phases and amplitudes of the two first harmonics of the 
line profile. 

3. Use these to find two or three first cumulants of the line profile. 
4. Determine the magnetic field parameters from Equations (3)-(7). These 

expressions yield at least 6 independent equations for 3 unknown values, H, 
7, and/3. Consequently, one expects no unique solution and, therefore, some 
kind of least squares best fit has to be sought. This procedure has not been 
developed yet. 

Note that parameters of the Fourier-harmonics can be obtained by a 
different method than proposed in items 1 and 2 above, for example, directly 
by using Michelson interferometers (Bell, 1972; Didkovsky, Kozhevatov and 
Stepanyan, 1986). 

4. Conclusions 

We believe that the proposed method for determining magnetic field param- 
eters from the cumulants of the line profile offers a number of advantages, 
compared with the traditional Babcock method, based on the comparison 
of polarized light intensities at two symmetric points in the line profile. 

1. The relation between the cumulants and the magnetic field value does 
not show saturation or back pass at large field intensities. 

2. The magnetic field is determined from integral properties of the line 
profile, so that the result will not be affected strongly, by the asymmetries 
of the profile. 

3. The use of integral properties will considerably reduce the effect of 
spatial irregularities (see Rees and Semel, 1979). 

4. When determining the magnetic field with a Babcock-type filter mag- 
netograph, the presence of non-compensated line-of-sight velocity may result 
in significant errors. Our method, in which the effects of the magnetic field 
and the line of-sight velocity are separated, does not have this disadvan- 
tage, and to a certain extent, it resembles the photographic method. (For 
detailed description of the photographic method see, for example, Bray and 
Loughead, 1964) 

5. Our method requires measurements at a limited number of points along 
the line profile. 
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