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1. INTRODUCTION

The increase of efficiency of solar batteries used on
satellites is one of topical problems. In order to solve
this problem, it is required to increase the specific
power of the solar battery, to improve its structure, and
to reduce its weight [4]. Such requirements to solar bat-
teries are claimed at developing of both small satellites
and large space vehicles. In the future, highly efficient
solar batteries will be required for space power plants.
Currently, in manufacturing solar batteries the crystal
silicone with a specific power of 40 W/kg and gallium
arsenide with 80 W/kg are used. The specific power
should increase by more than a factor of ten, when the
thin film with the amorphous silicone, deposited on it,
is used as a solar battery. This technology was sug-
gested recently [5]. An obstacle for manufacturing solar
batteries based on thin films was the absence of suffi-
ciently efficient and technologically effective structures
for their deployment and turning during the flight. The
way out of this situation is the use of flexible space
structures, whose development has been considerably
advanced in Russia in recent years [6]. There are two
promising methods of flexible structure deployment in
space, which are being actively developed now. The
first of them is based on using the centrifugal forces,
and the second one is based on using the Ampere force
for deployment and stabilization of film structures in
space. The present paper is devoted to the analysis of
the second method.

2. RADIAL STRESS IN A ROUND PLATE 
CONFINED BY THE CONDUCTOR WITH 

CURRENT

We consider a thin round plate of radius 

 

R

 

 and thick-
ness 

 

h

 

. The conductor having circular cross section of
radius 

 

a

 

 is located over the circle at the edge of a non-
conducting plate. The direct current 

 

I

 

 flows over the
conductor and generates in an ambient space the mag-
netic field with induction 

 

B

 

 = 

 

µ

 

0

 

H

 

. According to the
Ampere law, this magnetic field results in appearance
of the force acting on the conductor with current that
generates this field. The component of force 

 

F

 

q

 

, acting
in the direction of coordinate axis 

 

q

 

, is determined by
the free energy of the magnetic field 

 

Ψ

 

(

 

q

 

, 

 

I

 

)

 

 by the for-
mula:

 

(1)

 

The free energy is determined by the magnetic field of

current: 

 

Ψ

 

 =  

 

where integration is per-

formed over the volume occupied by the field. Making
use of the Maxwell equation 

 

∇ ×
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 and introducing
the vector potential of the field according to the formula
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, we obtain: 
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potential is determined by the density of electric current
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 generating the magnetic field:
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where 

 

R

 

j

 

 is the distance between the current’s element
and an observation point. Making use of this expression
for the vector potential, we obtain the formula for free
energy of the magnetic field, generated by a thin closed
conductor, in the form:

 

(2)

 

where 

 

L

 

 is the coefficient of self-induction of a closed
conductor. In deriving formula (2) the electric current
density was replaced by the full current flowing in the
conductor: 

 

j

 

dV

 

 =

 

 

 

Id

 

I

 

. In this formula 

 

d

 

I

 

 and 

 

d

 

I

 

'

 

 are arbi-
trary elements of the conductor, the distance between
which equals 

 

R

 

j

 

. Substituting (2) into (1), we obtain the
component of the force acting on a closed conductor
with current:

 

(3)

 

The self-induction coefficient (see Appendix, formula
(A4)), has the form:

 

(4)

 

Substituting (4) into (3) and letting the generalized
coordinate to be 

 

q

 

 = 2

 

π

 

R

 

, we obtain the component of
force 

 

F

 

||

 

 acting along the conductor’s axis:

Consider now the element of a circular conductor lean-
ing on the angle 

 

ϕ

 

, whose length equals 

 

l

 

. As is shown
in Fig. 1, the force 

 

F

 

⊥

 

, directed normally to the conduc-
tor and located in its plane, is the resultant of forces 

 

F

 

||

 

applied to the edges of a selected element. Therefore,

 

F

 

⊥

 

 

 

= 2

 

F

 

||

 

sin(

 

ϕ

 

/2)

 

. The force, normalized with respect to
the unit of conductor’s length 

 

f

 

A

 

 = 

 

F

 

⊥

 

/
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= 

 

F
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/2

 

R

 

sin(

 

ϕ

 

/2)
= 

 

F

 

||

 

/

 

R

 

, is determined by the formula:

 

(5)

 

Now we find the radial component of the stress ten-
sor 

 

σ

 

rr

 

 in a plate. Stresses arise as a result of applying
the Ampere force 

 

f

 

A

 

 to the plate’s edges. We introduce
the Cartesian coordinate system with axis 

 

z

 

, directed
normally to the plane of a plate located in the 

 

x

 

, 

 

y

 

 plane.
Under an effect of applied force, the strain 

 

u

 

 arises in
the plate, which satisfies the equation [3]:

 

(6)

 

where 

 

σ

 

 is the Poisson coefficient, 

 

E

 

 is the Young’s mod-
ulus, 

 

P

 

 is the density of volume forces normalized with
respect to the unit of plate’s area. In a resting plate, in the
absence of gravity force, 

 

P

 

 = 0. In the cylindrical coor-
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dinate system r =  ϕ = equation
(6) is as follows:

This equation, under the condition ur(r = 0) = 0, has the
solution: ur = c1r. The radial component of the stress
tensor σrr is determined by the equality [3]:

(7)

Substituting ur = clr into (7), we get: σrr = 

Since the radial stress does not depend on radius, its
value is determined by the radial component of the
Ampere force fA, applied to the edge of a plate, normal-
ized with respect to the unit of conductor’s length σrr =
fA/h. Therefore, c1 = fA(1 – σ)/Eh. This value of the con-
stant allows one to obtain the formulas for stress and
strain of a thin plate confined by a circular conductor
with current:

(8)

Let us estimate the value of the radial component of the
stress tensor. Letting in formula (8): R = 1 m, h = 10–6 m,
a = 10–4 m, I = 3A, we obtain: σrr = 12 N/m2. The value
of the radial component of the force applied to the
plate’s edge, normalized with respect to the unit of the
circle’s length, is equal to f = 1.2 · 10–5 N/m. The pre-
sented estimates indicate that the ring electric current
generates in a plate the stress whose tensor radial com-
ponent does not depend on r. An increase of the value
of the component of the stress tensor by two–three
orders of magnitude is possible in the case, when the
concentric circular currents are arranged on a plate in
place of a single current loop considered above.
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Fig. 1. A scheme illustrating the balance of forces applied
to a separate element of a conductor.
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3. FORCES OF INTERACTION OF CIRCULAR 
CONCENTRIC CONDUCTORS WITH CURRENT 

ON A THIN PLATE

Now let us find the forces acting on a plate, on which
thin conductors in the form of N concentric circles with
radii ri are arranged, as shown in Fig. 2. The numbers
of circles assume the values i = 1, 2, …, N. The greatest
radius of the ring current coincides with the plate’s
radius rN = R. Direct electric currents Ii flow over con-
ductors and generate in the surrounding space the mag-
netic field with induction B. The force ∆Fi acting from
the magnetic field side on current’s element of the ith
conductor I∆dIi is determined by the expression: ∆Fi =
I∆Ii × B. The magnetic field, acting upon this conduc-
tor, is formed by currents in conductors j ≠ i. In the (x, y)
plane the field component Bz = B is nonzero. The radial
component of the Ampere force, acting upon the ele-
ment of the ith conductor ∆li, is determined by the for-
mula:

The magnetic field B(r = ri, z = 0) is equal to the sum of
fields, generated by all circular conductors except for
the intrinsic field of the ith conductor. The magnetic
field Bij of the ring current Ij of radius rj at the point with
coordinates z = 0, r = ri has only the z-component,
which is determined by the ϕ-component of the vector

potential: Bij =  The component of the

vector potential Aϕ) of the magnetic field of current Ij,
flowing in a closed circular conductor of radius rj, is
determined by the formula:

where the angle ϕ is measured from the plane passing
through the axis z and the field observation point. Intro-
ducing the new variable of integration θ = (ϕ – π)/2, we
obtain the z-component of the magnetic field in a con-
ductor of radius ri, located on the plane z = 0, in the
form:

where K(x) and E(x) are the Legendre’s complete ellip-
tic integrals determined by the equalities [1]:
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The total magnetic field of all currents flowing in the
conductors j ≠ i, acting on the ith conductor, is equal to:

B(r = ri, z = 0) = 

Therefore, the radial component of the force fi, acting
upon a unit of length of the ith conductor located on a
thin plate, is determined by the expression:

(9)

The surface density of forces, acting on a plate from the
side of a set of thin concentric circular conductors with
current, is equal to the sum:

(10)

where δ(x) is the Dirac delta-function.

4. STRESSES IN A PLATE AT INTERACTION 
OF CIRCULAR CONCENTRIC CONDUCTORS 

WITH CURRENT

Let us find the stress tensor in a plate, on which thin
conductors with electric current, forming the surface
density of forces (10), are located. According to the
Ampere law, the magnetic field results in the appear-
ance of forces of interaction between conductors. Since
the conductors are rigidly connected with the plate,
these forces are transferred to the plate causing stresses
in it. We should make calculation of strain and stress
fields in a plate, taking into account only the forces of
interaction of various conductors and neglecting the
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Fig. 2. One possible version of connection of circular con-
centric conductors on a thin plate.
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effect of intrinsic field on a conductor. Under the action
of an applied force, the strain u arises in the plate,
which satisfies equation (6). When axial symmetry
takes place, this equation is as follows:

(11)

The component σrr of the stress tensor is determined by
equality (7). Beyond the field of action of volume
forces r ≠ ri and P = 0, the radial component of strain
ur = u(r) satisfies the homogeneous equation:

(12)

whose general solution is:

(13)

where c1, 2 are integration constants. Their values are
determined by the boundary conditions imposed on
function u(r) and its derivative at points r = ri of appli-
cation of the Ampere forces. At these points the strain
u(r) is continuous, while du/dr bears discontinuity,
whose value can be found by integration of equation
(11) over the r vicinity of point r = ri. As a result, we
obtain a set of boundary conditions for the radial com-
ponents of a strain vector:

(14)

At the coordinate origin r = 0 the strain u(r) should be
bounded, and at the plate’s edge r = R the Ampere force,
acting on the Nth conductor, should be compensated by
the radial stress of the membrane: σrr(r = R) = fN/h.
Making use of equation (7), we obtain the conditions,
to which the strain at membrane’s center and boundary
satisfies:

(15)

Solution (13) of equations (11) with right-hand side
(10) can be written as:

(16)

Constants ki, pi in equality (16) are determined from
boundary conditions (14) and (15). Having substituted
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(16) into (14), we obtain the recurrence relations for
determination of the constants:

It follows from the boundedness of function u(r) at r =
0, that p0 = 0; therefore,

(17)

For determining k0 one should use boundary condition
(15), which gives the relation:

Making use of equalities (17), we get:

(18)

Thus, the radial component of a strain vector is
determined by the formula:

where the constants ki and pi are determined by expres-
sions (18), and the quantities gi and λij are found from
the equalities:

(19)

The radial component of a stress tensor, according to
formula (7), is determined by the expression:

(20)

It should be noted that the radial component of the
stress tensor σrr bears discontinuities at the point r = ri.

5. DISTRIBUTION OF STRESSES IN A PLATE 
WITH CIRCULAR CONCENTRIC CURRENTS

Except for the neighboring conductors, each circu-
lar current is affected by the Ampere force caused by
the magnetic field generated by the same current. In this

ki ki 1–– –
1
2
---gi; pi pi 1––

1
2
---giri

2.= =

kn k0
1
2
--- gi

i 1=

n

∑– ; pn
1
2
--- giri

2

i 1=

n

∑ .= =

kN 1–
pN 1–

R2
------------– σ kN 1–

pN 1–

R2
------------+⎝ ⎠

⎛ ⎞+ gN .=

kn

gN

1 σ+
------------

1 σ–

2 1 σ+( )R2
--------------------------- giri

2 1
2
--- gi;

i n 1+=

N 1–

∑+
i 1=

N 1–

∑+=

p0 0; pn
1
2
--- giri

2; n
i 1=

n

∑ 0 …, N 1.–,= = =

u r( ) kir
pi

r
----;+=

ri r ri 1+< < , 0 r0 r1 … rN 1– rN< < < < R,= =

gi
1 σ2–

Eh
--------------

µ0Ii

2π
--------- I j

1
r j ri+
--------------K λij( ) 1

r j ri–
-------------E λij( )+ ,

j i≠
∑=

λij

4rir j

ri r j+( )2
--------------------.=

σrr
E

1 σ2–
-------------- 1 σ+( )ki 1 σ–( )

pi

r2
----– ,=

ri r ri 1+< < .



510

COSMIC RESEARCH      Vol. 45      No. 6      2007

SOROKIN et al.

case, the radial component of the Ampere force ∆Fi,
acting upon the element of the ith conductor, is deter-
mined by the formula:

where ∆Fi0 is the force, acting upon a conductor, caused
by its intrinsic magnetic field, while the magnetic field
B(r = ri, z = 0) is equal to the sum of fields generated by
all remaining circular conductors. The force ∆Fi0 is
found from formula (5):

Adding ∆Fi0/∆li and equality (9), the radial component
of the total force fi, acting upon the unit of length of the
ith conductor with current in the plane of a thin plate, is
found as:

(21)

Substituting (21) into (10), we obtain the surface den-
sity of forces acting upon the plate from the side of a set
of thin concentric circular conductors, with allowance
made for the intrinsic magnetic field’s effect on a con-
ductor. The radial component of the stress tensor is
determined by formulas (20) and (18), in which con-
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.

stants ki and pi are expressed in terms of quantities gi,
λij by the formulas:

(22)

The important characteristic of a system of circular
conductors with current is their total magnetic moment.
The interaction of this moment with the geomagnetic
field can cause turning of a spacecraft with a film struc-
ture in the form of a solar battery. This results in a dis-
turbance of its orientation and in reduction of the solar
radiation flux onto the battery. The magnetic moment M
of the system of conductors under consideration equals:

(23)

The problem of choosing the optimum parameters of a
system of currents, providing deployment and stabiliza-
tion of film structures by means of the Ampere forces
can be formulated as a nonlinear optimization problem.
It is necessary to select the current system’s parameters
{ri, Ii} in such a manner that stretching stresses in a film
structure be maximum and its magnetic moment be
minimum or equal to zero. Such a problem can be
solved by selecting the magnitude and direction of cur-
rents in the film structure’s conductors. As an example,
we consider three circular conductors connected
between themselves and located on a thin plate. We
choose the values of their radii to be: r1 = 0.4 m, r2 =
0.8 m, r3 = R = 1.0 m. We suppose the values of currents
in the first and second conductors to be equal to I1 = 4 A
and I2 = 8 A. The current in the third conductor is deter-
mined from the condition of zeroing total magnetic
moment (23) of the system:

Figure 3 presents the plot of the radial component of the
stress tensor in a thin plate with three concentric circular
conductors with currents, whose values are given above,
as a function of radius. The calculation was carried out
by formulas (18), (20), and (22). The following parame-
ters were chosen for calculation: i = 3; h = 10–6 m;
E = 3 · 109 N/m2; and σ = 0.3. For comparison, the plot
shows also the value of a stress in the same plate, which
arises under an effect of current I3 flowing in a conduc-
tor located on the plate’s edge. The calculation was car-
ried out by formula (8). As follows from Fig. 3, in the
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Fig. 3. The plot of a radial component of the stress tensor
σrr in a thin plate with three concentric circular conductors
(curve 1) as a function of radius. The value of the radial
component of the stress tensor in a thin plate with circular
current (straight line 2).
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presence of three conductors the stress in a plate
depends on radius and bears discontinuity at connec-
tion points of conductors with a plate. The value of this
stress considerably exceeds the stress generated by a
single conductor. This example indicates that the use of
several conductors as a stabilizing system allows one to
essentially increase the value of a stress stretching the
plate. Simultaneously, this scheme makes it possible to
minimize the magnetic moment of a system by using
differently directed currents of specific values.

Let us compare the efficiency of the considered
technique of stabilizing film structures in space with the
method based on using the centrifugal forces. For this
purpose we estimate the value of a radial stress arising
in a plate that rotates at angular frequency ω around the
axis z. In this case the volume force is the centripetal
force: Pr = ρhω2r, where ρ is the density of the plate’s
material. For the rotating plate equation (11) has the
form:

The boundary condition is the absence of stress at the
edge of a plate σrr(r = R) = 0. The solution of this equa-
tion with the given boundary condition allows one to
find the radial stress:

Now let us estimate the value of a radial stress at the
plate’s center r = 0. Letting: ρ = 103 kg/m3 R = 1.0 m,
σ = 0.3, ω = 2π/T, T = 15 s, we obtain σrr = 64 N/m2.
Thus, the values of radial stresses, achieved with using
both techniques, are comparable in the order of magni-
tude (see Fig. 3). The radial stress caused by inertial
forces decreases down to zero at the plate’s edge, while
the stress caused by the Ampere force is nonzero every-
where. Therefore, there always exists the a region of the
plate with the radius exceeding some specific value, in
which the Ampere force produces stresses larger than
the inertial force.

CONCLUSIONS

The magnetic field of a circular closed current
results in appearance of the force acting upon a conduc-
tor with current generating this field. If the conductor is
rigidly connected with the film it bounds, then the
stresses and strains, caused by this force, arise in the
film. It is shown that the stress does not depend on
radius, and the strain grows towards the film’s edge.
The stress value considerably increases in the case,
when several concentric conductors with current are
located on the film. Each conductor is affected by its
intrinsic magnetic field, as well as by the field gener-
ated by all remaining circular currents. It is shown that
inside the circular conductor with the smallest radius

d
dr
----- 1

r
--- d

dr
----- rur( ) –

1 σ2–
E

--------------ρω2r.=

σrr
ρω2R2 3 σ+( )

8
---------------------------------- 1 r2

R2
-----–⎝ ⎠

⎛ ⎞ .=

the component of the stress tensor does not depend on
radius. This component bears discontinuity at connec-
tion points of conductors with the film. And between
two nearest concentric conductors it grows depending
on radius. The choice of relationships between the val-
ues of radii and currents allows one to minimize the
magnetic moment of the system of currents. The per-
formed calculations have demonstrated the possibility
of using the Ampere force for stabilization and deploy-
ment of thin film structures such as solar batteries.
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APPENDIX

The self-induction coefficient of a closed conductor
is determined by the expression:

(A1)

In its calculation it is necessary to take into account the
thickness of a conductor. If the conductor is supposed
to be infinitely thin, then integral (A1) will logarithmi-
cally diverge at Rj  0. This is due to the fact that
both integrals are taken over the same contour. In order
to estimate integral (A1) one should represent the self-
induction coefficient as the sum L = Li + Le, where Li

and Le are related with the magnetic field energy inside
and outside the conductor, respectively [2]. The mag-
netic field inside the conductor can be supposed to coin-
cide with the field of an infinite right cylinder H =
Ir/2πa2, where r is the distance from the cylinder’s axis.
This makes it possible to determine the internal part of
the self-induction coefficient:

(A2)

For estimating Le one should have in mind, that the field
outside the thin wire does not depend on the current dis-
tribution over its cross section. The energy of the exter-
nal magnetic field do not change, if the current is
assumed to flow over the wire surface only. To a suffi-
cient degree of accuracy one can suppose [2], that:

The integration is performed over all pairs of contour’s
points, the distance between which exceeds a/2. The
integrand expression depends only on the central angle
ϕ on which the chord Rj of the ring’s circle leans upon
(see Fig. 4). Substituting Rj = 2R sin(ϕ/2); dIdI' =
dldl'cosϕ, we obtain:

L
µ0

4π
------ dIdI '

R j

-------------.∫°∫°=

Li
2

I2
----

µ0

2
----- H2 Vd∫

µ0

4
-----R.= =

Le

µ0

4π
------ dIdI '

R j

-------------.∫
R j a/2>

∫=
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The lower limit of integration is determined from the
condition 2Rsin(ϕ0/2) = a/2. Substituting ϕ0 ≈ a/2R � 1,
we get:

(A3)

Le

µ0

4π
------ R ϕ '2

ϕRdϕcos
2R ϕ/2( )sin
-----------------------------

ϕ0

π

∫d

0

2π

∫=

=  µ0R –
ϕ0

4
-----tanln 2

ϕ0

2
-----cos– .

Le µ0R
8R
a

-------ln 2–⎝ ⎠
⎛ ⎞ .=

Adding (A2) and (A3), we obtain the estimate of inte-
gral (A1):

(A4)
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Fig. 4. The scheme of the integration contour for calculating
the self-induction coefficient of a circular conductor.
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