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low ionosphere are considered. The dispersion properties of a discrete set of ULF waves

are found taking into account the effect of their damping. The dependence of these

properties on the propagation angle relative to the ambient magnetic field is analysed.
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1. Introduction

Recently Sorokin and Pokhotelov (2005) provided the
analysis of gyrotropic wave (GW) propagation in the middle-
latitude ionosphere. This type of ULF waves was termed
gyrotropic after Sorokin and Fedorovich (1982) since they
exist in strongly gyrotropic, weakly ionized plasma. The
electrons in such plasma are magnetized whereas the ions are
not magnetized. In other words, the off-diagonal components
of the dielectric tensor (Hall terms) substantially exceed the
diagonal terms (Pedersen terms). The relative role of this
effect depends on the parameter 1/g, where g ¼ (ne/oe)+
(oi/nin) and oe, oi stand for the electron and ion gyrofre-
quencies, nab is the collision frequency of the a specious with
the b specious and ne ¼ nei+nen. In the lower ionosphere there
are two basic low-frequency modes. The first one corresponds
to the Alfven mode and the second one refers to the
gyrotropic mode. A close inspection of the dependence of g

on altitude shows that in the lower part of the E-layer g51. At
these altitudes the Alfven waves strongly decay whereas the
ll rights reserved.

+7495 334 0124.

kin).
GWs can propagate with the weak damping (Sorokin, 1988).
Their phase velocity is of one or two orders smaller than the
Alfven velocity. Physically the weak damping of this mode is
due to the fact that the Hall current is orthogonal to the
applied electric field. In this case the Joule dissipation is
insignificant. In the lower ionosphere the GWs are generated
by acoustic or electromagnetic impacts that accompany such
phenomena as industrial atmospheric explosions, magneto-
spheric activity, etc. The dispersion relations and impulse
wave functions have been obtained in the framework of the
model of the thin conductive layer in the low ionosphere.
These waves are usually used for the interpretation of various
geophysical phenomena that are accompanied by propagation
of the ULF electromagnetic (EM) waves along the Earth’s
surface with the velocities (1–100) km/s. However, in the real
conditions the conductive layer has a finite depth. Incorpora-
tion of this effect results in the generation of discrete wave
modes in addition to the mode that exists in the infinitely thin
conductive layer. Sorokin (1987) and Sorokin et al. (2003)
using exact analytical solutions found the dispersion relations
for these modes in particular case of the field-aligned
propagation when the mode damping is neglected. Moreover,
the Pedersen conductivity was neglected and the altitude
dependence of the Hall conductivity sH was interpolated by
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the Epstein layer, i.e. sH(z)pcosh�1(z/l). Note that the absence
of Pedersen conductivity precludes the possibility of incor-
poration of any wave damping. Furthermore, in order to
advance the theory and its applications it is necessary to
study the dependence of its characteristics on different
propagation angles. For practical applications it is important
to interpret the lined wave spectra in the frequency range
(1–30) Hz observed in Rauscher and Van Bise (1999) during
launches and landings of spacecraft, earthquakes and volcano
eruptions. In what follows the dispersion relations of eigen-
modes propagating under the angle to the ambient magnetic
field at low latitudes are obtained. These dispersion relations
take into account the damping in the conductive layer of finite
depth.

The paper is structures in the following fashion:
Section 2 describes the basic equations for considered
problem. Dispersion relations for the GWs in the finite
depth conductive layer are obtained in Section 3. Our
conclusions and discussions are found in Section 4.
Finally, Appendix describes the details of our calculations.

2. Basic equations for EM field in the finite depth
conductive layer

We consider the ionosphere immersed in the uniform
magnetic field B. The perpendicular electric field in the
conductive layer can be found from the Ampere’s and
Faraday’s laws (cf. Sorokin and Pokhotelov, 2005)

D�
1

c2

q2

qt2

 !
ðB� EÞ � B�rðr � EÞ

¼
4p
c2

sP B�
qE

qt

� �
� sHB

qE

qt

� �
and ðE � BÞ ¼ 0, (1)

where sP and sH stand for the Pedersen and Hall
conductivities and E is the wave electric field.

Due to the high mobility of the electrons the parallel
ionospheric conductivity is considered much larger than
other conductivities, i.e. sJbsP, sH. Furthermore, the
Gaussian coordinate system (x, y, z) is used with
the z-axis directed vertically upwards. We note that the
displacement current is also taken into account on the
right-hand side of Eq. (1). Moreover, the ambient
magnetic field B lies in the horizontal plane (x, y) under
the angle a to the x-axis. The electric conductivities in
horizontally uniform ionosphere depend solely on the z

coordinate. We assume that all perturbed values depend
on space and time as p exp(ikx�iot).

In the low-frequency limit, o54psP,HE107 s�1, Eq. (1)
reduces to two scalar equations for the y and z

components of the electric field
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Since E . B ¼ 0, the x-component of the electric field is
connected with the y-component through the relation
Ex ¼ �Ey tana.
The conductive ionosphere is characterized by the
boundary conditions that consist of the relations between
the tangential component of the electric field and the
normal derivative above and below the ionosphere. We
will obtain the wave solutions in these regions and
substitute them into the boundary conditions which are
derived in Appendix (see Eqs. (A.9))
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Since the wave velocity in the magnetosphere substan-
tially exceeds the velocity of GWs in the E-layer, the
tangential component of the electric field above the
ionosphere satisfies the Laplace equation, i.e. DEy ¼ 0.
The same is valid for the insulated atmosphere below the
ionosphere. The solution of Laplace equation above and
below conductive layer with the depth l is

Ey ¼ A1 exp �jkj z� l
2

� 	
 �
; z4 l

2 ;

Ey ¼ A2 exp jkj zþ l
2

� 	
 �
; zo� l

2 :
(4)

3. Dispersion relation for GWs in the finite depth
conductive layer

Substituting (4) into (3) and illuminating the constants
A1 and A2, one finds the dispersion relation for the GWs in
the finite depth conductive layer

k2
H

cos4 a
� 2k2

þ ikP jkj � kH
sin a
cos2 a

� �� �
tanh l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
�

k2
H

cos2 a

s

¼ 2jkj � i
kP

cos2 a

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
�

k2
H

cos2 a

s
,

kH ¼
4posH0

c2k
; kP ¼

4poSP

c2
. (5)

Let us now consider the limiting case of the conductive
layer with infinite conductivity. Such layer is character-
ized by the finite integral

R
�N
N sH

2(z) dz ¼ sH0
2l ¼ const.

Passing in Eq. (5) to the limit l-0 and sH0-N and
keeping sH0

2l ¼ const, one obtains the dispersion relation
for the GWs propagating in the thin layer under the angle
a to the horizontal magnetic field

o2 � 2k3la2 cos4 aþ ionk2 cos2 a ¼ 0. (6)

The abbreviations in Eq. (6) are (cf. Sorokin, 1988)
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For a ¼ 0 Eq. (6) coincides with that obtained by
Sorokin and Pokhotelov (2005) in the limiting case of
parallel wave propagation. The Pedersen conductivity of
the upper layer provides the wave damping and in the
real conditions does not actually influence their phase
velocities.

Making use of designations introduced in Eq. (6), from
Eq. (5) one finds
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1
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; kP ¼
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. (7)

The analysis of spectral characteristics of waves in the
layer of finite depth we will carry out for the case when
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Fig. 1. Dispersion curves for the gyrotropic waves propagating in the finite dept

Gaussian coordinate system (x, y, z) is used with the z-axis directed vertically u

under the angle a to the x-axis. The electric conductivities in horizontally unifo

modes with n ¼ 0, 1, 2, 3, 4. The solid line corresponds to a ¼ 0, the dashed—

a ¼ 3�106 cm/s.

150

100

50

2 4
�,

�,
 k

m
/s

n = 2

n = 1

n = 0
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(8)

Eq. (8) yields a discrete set of solutions which takes the
form on ¼ f(kn, a, n), where n is integer, i.e. n ¼ 0, 1, 2,
3,y. The dispersion curves for different n, calculated with
the help of Eq. (8), are depicted in Fig. 1. The dependence
of the phase velocity vn ¼ on/kn as a function of frequency
o is shown in Fig. 2. One sees that for a fixed wavelength
l ¼ 2p/k the frequency f ¼ o/2p increases for the waves
with the large n. For instance, if the wavelength for the
parallel propagation is l ¼ 60 km, the corresponding
frequencies are fE1.5, 2.0, 3.0, 5.0 Hz. The larger the
propagation angle a the smaller the frequencies. The
0.15 0.20
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for different discrete modes and different propagation angles. The solid
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phase velocity increases with the increase of the wave
frequency or its wave number. The phase velocity of the
fundamental mode (n ¼ 0) vanishes with the decrease in
the frequency. For example, in the frequency range
f ¼ (0–1) Hz for the quasi-parallel propagation the waves
with n ¼ 0, 1, 2 have the phase velocities that lie in the
range f ¼ (0–75), (90–120) and (190–200) km/s. With the
increase in the propagation angle a the phase velocities of
each mode decrease.

Let us now consider how the wave damping influences
the mode spectral characteristics. Let us now introduce in
Eq. (7) the damping rate G as O ¼ O1�iG. Fig. 3 shows the
normalized damping rate G/O1 as a function of the
wavelength for the GWs when damping is weak, i.e.
G5O1. One finds that maximum damping is attained
when lE(30–100) km.
4. Conclusions

It has been shown that in ULF range the conductive
ionosphere supports the EM eigen-modes that arise due to
the finite depth of the conductive layer. The phase velocity
of each mode increases with its frequency and wave
number. However, it decreases with the increase in the
propagation angle relative to the ambient magnetic field.
The dispersion properties of the fundamental mode are
basically controlled by a type of the model of the
conductive layer. We note that the Pedersen conductivity
only influences the value of the phase velocity. It controls
solely the wave damping. It was found that the damping
attains the maximum value in a specific interval of the
mode wavelengths.
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Appendix

We assume the ionosphere consisting of two horizon-
tal conductive layers with different conductivities. The
upper layer is characterized only by Pedersen conductivity
whereas the Hall conductivity is zero in this region. On the
contrary the lower layer is characterized solely by the Hall
conductivity and the Pedersen conductivity is zero. The
horizontal spatial scale is much larger than the depth of
the conductive region. This allows us to consider that
inside each layer the conductivity is constant. Assuming in
the lower layer sP ¼ 0 from Eq. (2) one obtains

ik tan adEy

dz
� k2Ez � io 4psH

c2 cos a
Ey ¼ 0,

1

cos2 a
d2

dz2
� k2

 !
Ey þ ik tan adEz

dz
þ io 4psH

c2 cos a
Ez ¼ 0.

(A.1)

In the upper layer, assumingsH ¼ 0, from Eq. (2) one
obtains
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(A.2)

Let us consider the equation for the horizontal compo-
nent of the electric field in the lower ionosphere layer
where the Hall conductivity is nonzero. Illuminating Ez

from Eqs. (A.1), one obtains
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(A.3)

The altitude distribution of the Hall conductivity sH is
approximated by

sHðzÞ ¼ sH0Zðzþ l=2ÞZðl=2� zÞ;

where Z(z) is the unit step function. Thus, the vertical
derivative in Esq. (A.3) takes the form

dsHðzÞ

dz
¼ sH0½dðzþ l=2Þ � dðz� l=2Þ�;

where d(z) is the Dirac delta function. The general solution
of Eq. (A.3) inside the layer �l/2ozol/2 is

Ey ¼ C1 expð�qzÞ þ C2 expðqzÞ,
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where C1 and C2 are the arbitrary constants. Defining
these constants, from above solution one finds
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(A.4)

Integrating Eq. (A.3) over z in the vicinity of upper z ¼

l/2 and low z ¼ �l/2 planes that bound the layer one
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finds
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In Eq. (A.5) the {y} braces denote the difference of the
values above and below the corresponding planes, i.e.
{Ey}l/2 ¼ Ey(l/2+0)�Ey(l/2�0). Combining the equalities
(A.4) and (A.5) one finds the relation between the
tangential component of the electric field and its normal
derivative at the boundaries of the low ionospheric layer
where Pedesen conductivity vanishes, i.e.
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Now let us consider the upper layer of the ionosphere
where the Hall conductivity is zero. From Eq. (A.2) one has
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Assuming this layer to be thin, i.e. sP(z) ¼ SPd(z�l/2),
and integrating Eq. (A.7) one finds
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where SP is the height-integrated Pedersen conductivity
of the ionosphere. Summing up equalities (A.6) and (A.8),
one obtains the relation that connects the tangential
component of the electric field and its normal derivative
above and below the ionosphere:
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